
10 LINCOLN LABORATORY JOURNAL ■ VOLUME 22, 2015

Autonomous Robot
Control via Autonomy
Levels (ARCAL)
Lawrence A.M. Bush and Andrew Wang
Distribution A: Public Release

In the future, unmanned platforms will
gain decision-making intelligence that
enables them to autonomously operate in
clusters to perform collaborative tasks. For

successful field deployment of unmanned systems, opera-
tors will need confidence in artificial decision-making in
uncertain environments. Adjustable autonomy technolo-
gies, concepts, and simulation environments to evaluate
teaming behaviors will enable researchers to develop
these systems. Network and sensing advances have cre-
ated the opportunity for increased mission performance,
but at the expense of greater complexity in sensor coor-
dination and analysis. Current unmanned systems that
are typically teleoperated and are labor intensive, since
they rely on human operators and their decision-making
capabilities to perform mission tasks.

Today, both mission and sensing complexity are
managed through increased automation of lower-level
functions, helping operators focus on higher-level deci-
sions. The lower-order decision-making algorithms under
development include those for waypoint following and
collision detection and avoidance. Some of these capa-
bilities have been incorporated in operational platforms.

Deployment
A team of air and ground unmanned autonomous sys-
tems (UAS) might be deployed in a natural disaster relief
scenario as depicted in Figure 1. In this example, a major
earthquake has damaged buildings, roads, and bridges,
and disrupted communication, power, and water distri-
bution services. A damaged nuclear energy facility also

Unmanned aircraft systems (UAS) need to
handle more autonomy and perform more
intelligent behaviors. These systems will be
deployed in clusters with human supervisors
to perform collaborative missions. A UAS will
take on expanded roles invoking higher-order
decision-making functions and capabilities
supporting autonomous mission planning,
resource allocation, route planning, scheduling,
and execution of coordinated tasks.

»

This work was sponsored by the Department of the Air
Force under Air Force Contract FA8702-15-D-0001.
Opinions, interpretations, conclusions, and recommen-
dations are those of the authors and are not necessarily
endorsed by the United States Government.

 VOLUME 22, 2015 ■ LINCOLN LABORATORY JOURNAL 11

LAWRENCE A.M. BUSH AND ANDREW WANG

determine flight or road plans for scout vehicles to follow.
The execution manager algorithm would see that the mis-
sion is performed and goals are met.

It is the job of the logistics planner algorithm to
choose the actual sequence of waypoints such that it bal-
ances and reduces the risk among each component of the
mission. However, to make well-informed decisions, the
planner will need the scouts to gather additional data on
areas the logistics vehicle may cross in the future. The
scout dispatcher determines where to send the scouts,
given the plans currently considered by the logistics
planner. The execution of each plan carries with it some
uncertainty in risk. This plan risk uncertainty is trans-
formed into map uncertainty. In other words, the scout
dispatcher determines map locations that contribute
most to uncertainty. It then tasks scouts to survey these
areas to disambiguate candidate plans. Each scout’s exec-
utive planner accepts as inputs these areas and a time

requires an immediate response. Relief convoys need to
deliver supplies throughout the affected area. A team of
UASs composed of autonomous aerial and ground scouts
supervised by operators in a mission logistics vehicle is
dispatched to survey the damage. The system needs to
determine the safest path for the relief convoy to travel
to reach its destination in the minimum amount of time.

Figure 2 presents an architecture for functions that
this multiagent autonomous team would need to perform
in this scenario. Human mission operators in the logistics
vehicle would enter high-level goals, system constraints,
and policies into the system. Resource allocation algo-
rithms would be employed to develop a system composi-
tion based on the mission objectives with the appropriate
available resources, including platforms, sensor payloads,
processors, and communication capabilities. Planner
algorithms would develop platform route plans for opti-
mum survey coverage, and scheduling algorithms would

Supply
convoy

Operator mission
logistics vehicle

Autonomous
aerial scouts

Autonomous
ground scout

C
ro

ss
 c

ue
in

g
an

d
ta

sk
in

g

FIGURE 1. In this earthquake natural disaster relief scenario, a relief convoy needs to deliver supplies to those in
need by the safest path. A team of aerial scouts supervised by operators in a mission logistics vehicle is dispatched to
survey the damage and provide real-time route safety information.

12 LINCOLN LABORATORY JOURNAL ■ VOLUME 22, 2015

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

limit for reporting results on each area. The executive
must also receive the current risk estimate or "belief " for
the relevant area. The planner runs an adaptive sampling
algorithm that is trained to fly the path that achieves the
highest expected information gain within the time allot-
ted. As sensor measurements arrive, the belief update
module incorporates them into the risk belief, and at the
end of a sensing task, the scout reports the updated risk
belief to the logistics executive.

For successful system field deployment, opera-
tors need confidence that autonomous decision making
leads to optimal behaviors, especially when carried out
in uncertain environments. A number of concepts and
technologies are the subjects of current research to opti-
mize planning in uncertain environments. As shown in
Figure 2, one strategy is to equip functional modules with
risk-assessment capabilities. This strategy would allow

adjustment of the system’s autonomy levels according
to individual risk acceptance. At any time, an operator
can monitor autonomy algorithm decisions, augment or
modify algorithm inputs, or take over full manual control
of selected vehicles.

Another strategy is the incorporation of rigorous
verification processes within the UAS algorithm architec-
ture. Algorithm results or plan feasibility would be veri-
fied against operator risk acceptance as well as mission
resource costs and system performance or autonomous
behavior expectations. If conditions are not met, the sys-
tem may request new plans or request/task subgoals to
reduce uncertainty, including tasking additional scout
runs for surveillance information, satellite imagery, or
other sensor information.

UAS's performance in collaborative tasks has not
been thoroughly tested in uncertain environments and in

FIGURE 2. Within the generalized multiagent autonomy architecture of the Autonomous Robot Control via Autonomy
Levels (ARCAL) system, the logistics executive contains several submodules. Two of them are the high-level logistics
planner, and the low-level road map planner, each containing a risk-assessment functionality that operates on the risk
belief map. Together, these submodules determine the course of action for the logistics vehicle. The logistics planner
accepts mission goals from the operator and generates sequences of waypoints, producing a high-level road map that
will achieve the mission goals. Then, the road map planner finds the actual path taken between waypoints.

ARCAL algorithms

Logistics vehicle commands
Situational
awareness

Risk
info

Scout
vehicle

commands

Scout
vehicle

Sensor measurements

Mission
vehicle

Mission
goals

Operator
interface

Scout
belief

update

Logistics executive

Belief
updateRoad map

planner

Scout
planner

Tasked
areaScout

dispatcher

Proposed
plansLogistics

planner

Adjustable
autonomy

Scout executive

Risk belief
map

Risk
monitoring

 VOLUME 22, 2015 ■ LINCOLN LABORATORY JOURNAL 13

LAWRENCE A.M. BUSH AND ANDREW WANG

fact, such testing requires entirely new methods. Accu-
rate behavioral simulation and metrics are both vital and
lacking. The Autonomous Robot Control via Autonomy
Levels (ARCAL) project seeks to establish a robust plan-
ning architecture for collaborative, multivehicle autono-
mous systems by testing UAS performance in uncertain
environments.

Autonomous Robot Control via Autonomy Levels
ARCAL brings together researchers and engineers
from both MIT’s main campus and Lincoln Labora-
tory. Researchers from the Model-based Embedded &
Robotic Systems (MERS) Group at MIT have developed
risk-based adjustable autonomy and task-directed adap-
tive sensing systems that can autonomously coordinate
multivehicle missions with an overriding human operator.
Engineers from Lincoln Laboratory's Airborne Networks
Group developed a simulation environment to evaluate
autonomous collaborative behaviors and to determine
how well adjustable autonomy operations meet operator
expectations.

The project specifically tests risk-based adjustable
autonomy with task-directed adaptive sensing technolo-
gies and concepts to determine how tasks can be com-
pleted at different levels of autonomy. ARCAL utilizes
a novel simulation environment to test collaborative
autonomous algorithms and team behaviors prior to field
deployment. Adjustable autonomy algorithms and func-
tions drive simulated UASs in three dimensional (3D)
platform models that include dynamic environments
similar to real-world conditions.

Adjustable Autonomy with Risk Assessment
Adjustable autonomy hopefully combines the best ele-
ments of human intuition with computational prag-
matism. Challenges in creating a truly synergistic
relationship between humans and computers and sen-
sors, given human variability and the limitations of com-
puter logic, have tended to obscure an exact definition of
adjustable autonomy as a concept. In its most basic form,
an adjustable autonomy system makes two kinds of deci-
sions: determining what future actions are optimal and
how to engage the human operator in an optimal manner.
Both of these capabilities depend on risk estimates and
mission objectives, with risk explicitly incorporated in
the planning process. Given the mission’s logistical plan,

risks posed along each step of the plan are probabilities
integrated over each mission goal. The configuration and
distributions of these risks should inform optimal human
engagement. An adjustable autonomy architecture opti-
mizes the risk and planning process to provide situational
awareness (SA), keeping the human involved at the
appropriate level of detail for each mission component.

ARCAL’s contribution to adjustable autonomy is to
encode risk throughout the decision-making process.
In practice, scout aerial vehicles and other sensors can
improve risk awareness throughout the mission. Scouts
are specifically deployed to improve risk mapping and
refine decision making. Algorithms guide scouts toward
high-value information that will help identify the low-
risk pathways for future components of the mission. The
scouts are first tasked with informational reconnaissance
relative to the logistics planning. ARCAL performs some
tasks offline (learning and simulation) to minimize the
amount of online optimization needed.

Architecture
Algorithmic modules within the artificial intelligence
architecture enable the incorporation of risk informa-
tion and the involvement of a human operator. Modules
include the logistics executive, the scout executive, and
the adjustable autonomy module. These components
interact with the logistics vehicle, the scout vehicle, and
the human operator, as depicted in Figure 2.

The logistics executive planner chooses the actual
sequence of waypoints in a way that balances and reduces
risk among each component of the mission. To make
well-informed decisions, the planner needs information
on potential vehicle paths from scouts. The scout execu-
tive dispatcher determines where to send the scouts,
given plans currently under consideration by the logis-
tics planner. The risk associated with each plan carries
some uncertainty, which can be transformed into map
uncertainty. This uncertainty allows the scout dispatcher
to identify map areas that generate the largest propor-
tion of plan uncertainty. Scouts then survey these areas
to disambiguate candidate plans. Each scout’s executive
runs a scout planner that accepts as inputs these areas
and a time limit for reporting results on each area. The
executive must also incorporate the current risk belief for
the relevant area. The planner runs an adaptive sampling
algorithm trained to traverse the path that achieves the

14 LINCOLN LABORATORY JOURNAL ■ VOLUME 22, 2015

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

the success probability, i.e., a risk distribution.
Given this definition of risk, we describe below how

to represent risk in a belief map. With this definition, we
can build paths over the map and devise a risk distribu-
tion for each path. Finally, we explain how the scout mea-
sures and updates the risk belief map.

The belief map is represented by a grid of square
cells. Each cell contains a distribution over the probabil-
ity of success if the vehicle traverses that cell in any direc-
tion, independently of all other cells. This interpretation
allows us to use the Markov assumption (described below)
when constructing paths are from sequential cells. In our
belief map, we parameterize each cell with a mean and
variance to represent a beta distribution. Not only does
the beta distribution admit an intuitive interpretation,
but its parameterization is also appealing for real-time
calculation.

The belief map’s form makes it relatively straight-
forward to compose paths from cells; the distribution of
the resulting path is an approximation. We rely on the
Markov assumption that the probability of successfully
traversing a certain cell is independent of the probabilities
for other cells. Then, given a path of cells for which suc-
cessful traversal is a random variable, the success prob-
ability for the entire path becomes the product of each
of the independent cell traversal probabilities. Unfortu-
nately, the true distribution for the entire path is not a
beta distribution and cannot be analytically computed, so
we approximate it as a Gaussian distribution, parameter-
ized by a mean and variance.

The testing simulation must also incorporate envi-
ronmental obstacles into the belief map. The sensor has
algorithms for detecting and characterizing features of the
environment. The scout’s camera, for example, would be
interfaced with a pattern-recognition application for road
fissures that would then communicate the fissure param-
eters to the success probability estimate. If the camera’s
resolution is characterized by a variance, then the fissure’s
risk distribution can be characterized, and the information
is encoded into the grid cells occupied, effectively distribut-
ing the fissure’s risk over the area it occupies.

In summary, the simulation formulates risk as a dis-
tribution over a path, given a risk belief map. The map is
gridded into cells, each of which contains a beta distribu-
tion. Paths are sequences of adjacent cells, with risk dis-
tributions represented as truncated and scaled Gaussians.

highest expected information gain within the time allot-
ted. As sensor measurements arrive, the belief update
module incorporates them into the risk belief. By the end
of a sensing task, the scout reports the updated risk belief
to the logistics executive.

In a nonadjustable autonomy architecture, the
human operator would interface directly with the logistics
executive; here, the adjustable autonomy module medi-
ates their interaction. This module continuously monitors
the risk associated with each mission component accord-
ing to the entire state of the logistics executive. It tracks
the possibility that each component’s risk might exceed
user-specified thresholds. As these risks evolve because of
additional planning and updated risk beliefs, adjustable
autonomy may request human intervention for particular
mission components. Thus, while the human operator still
specifies mission goals to the logistics planner, she now
has an interface to override different components of the
logistics executive at varying levels of control. Together,
all of these modules provide a rational, risk-based opera-
tor interface.

Risk Assessment
A key capability of our system is assessing risk relative
to the overall mission goals. Here, risk is defined as the
likelihood that a logistical plan will or will not achieve
each and every goal, where a subgoal may involve driving
an emergency, utility, or personnel transport vehicle to a
needed location. Plan success is provisionally defined as
the probability of success in all of the parts of a plan. The
risk assessment problem then becomes as follows:

Given a path plan that nominally achieves overall
mission goals, and a belief map of the environ-
ment, we compute a distribution over a path’s
success probability, that is, the probability that
a ground vehicle can successfully traverse that
path. We cannot know the true path success
probability since we do not have a true map of the
environment. However, we possess a belief map
that models the location of features and obstacles
within the environment as well as our uncertainty
about them. We may know, for example, that a
certain type of obstacle exists in a general vicinity
but not know its precise location and threat level.
Thus, we must compute, and our algorithms
must operate on, a probability distribution over

 VOLUME 22, 2015 ■ LINCOLN LABORATORY JOURNAL 15

LAWRENCE A.M. BUSH AND ANDREW WANG

Scout Planner
The scout executive obtains more detailed scans of certain
areas that could yield safe routes for the logistics vehicle,
as illustrated in Figure 3. While the logistics executive
tasks the scouts with examining certain areas, it would be
inefficient for a scout to traverse each area in an equitable
manner by spending the same amount of time in each
area. For example, a human operator would immediately
fly/drive a vehicle to the most uncertain areas in order to
gain the most value from reconnaissance. The scout has
only limited time to complete reconnaissance and report
back to the logistics executive. The scout planner algo-
rithm incorporates scout observations and directs scouts
to collect data that optimally reduce risk uncertainty for
the logistics vehicle.

Figure 4 highlights the scout planner portion of the
ARCAL architecture and various components of the scout
planner algorithm. The scout planner dictates the policy
for which paths the scout should take. The policy is typi-
cally encoded as a value function. A typical scout scenario,
however, is so computationally intensive that the value
function would require the processor to have unreason-
able volumes of storage space. The iteration process thus
approximates the value function to yield nonoptimal but
reasonable solutions. Calculations are performed offline,
and the approximate solution is stored in an approxi-
mate value function. When the time comes for the scout
to execute online actions, it further reoptimizes the value
function according to its particular situation given com-
putational constraints.

ARCAL’s scout-planning problem is formulated as
follows:
• The scout dispatcher tells the scout which subset of

the full map needs to be surveyed to reduce uncer-
tainty in the risk belief.

• This subset is represented as a set of grid cells. Each
grid cell is associated with a prior risk distribution.

• The scout’s goal is to fly a path over the area in an al-
lotted time such that it maximizes the total reduction
in variance over these grid cells. (The total variance
reduction is the sum of all variance reductions in each
grid cell.)

ARCAL uses the general framework of the Mar-
kov decision process (MDP) to model the problem and
approximate dynamic programming (ADP) to solve
it. [1, 2] MDPs operate on discrete time steps. When an
MDP executes an action from a “current” state, there is
a probability of transitioning to a “next” state in the next
time step, and the expected reward associated with that
transition is calculated. ADP generates policy solutions
that assign an action to each state of the MDP. The value
of a state under a specific policy is the expected sum of
discounted rewards obtained when the policy is followed.
The objective is to find an optimal policy that maximizes
the value of every state.

For a policy to be optimal, it must choose actions that
maximize the expected value of the subsequent state. In
other words, the optimal action moves to the next-best
state, and then plans from that new state. The optimal
policy derives from solving for the optimal value function.
For the scout-planning problem, we define the following
components of an MDP:
• The state includes the vehicle location and belief map

(i.e., risk distributions over the relevant grid cells).
• The action set refers to scout vehicle movement op-

tions. In our problem, the available actions are left,

FIGURE 3. In this rescue scenario, he logistics executive tasks an aerial scout team (here, three
UAS) to identify traversable paths from a set of possible paths. The scout planner algorithm allocates
resources in response to the need for locating a safe route and quantifying the path risks to the rescue
vehicle and the mission.

16 LINCOLN LABORATORY JOURNAL ■ VOLUME 22, 2015

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

right, and straight at any grid cell.
• Reward is defined as the total reduction in uncertain-

ty for the relevant grid cells. It is calculated by taking
the sum over all reductions in variance resulting from
the Kalman filter-based updating of the state from the
scout's observations.

It should be noted that the state space includes the
belief map, in addition to the location and pose (three
dimension of location plus a "pointing" direction of the
scout). This information is a necessary part of the state
because the reward in transitioning between states is
solely defined by the reduction in variance. Given high
initial uncertainty, traversing new cells decreases vari-
ance more than moving between cells whose uncertainty
is already low. Including the belief map makes the state
space continuous.

Figure 5 shows the offline scout algorithm. The scouts
use approximate dynamic programming to create a pol-
icy for acting in the world. A policy interfaces states and
actions by instructing scouts in given situations. Their
state space includes not only location, pose, and risk but
also uncertainty in the risk map belief. Computing the
value function is computationally intensive, so ARCAL

approximates it offline through value iteration before the
mission starts. The approximation simulates scout recon-
naissance of high-value areas and saves snapshots of the
simulation as data points in a table (Q table or Q func-
tion). We then generate an approximation architecture on
each iteration by regressing over these data points, taking
representational uncertainty into account. [3]

Action Selection Algorithm
A central question is how to choose the actions to reeval-
uate. As stated previously, the offline algorithms gen-
erate a state-action value function and a tree of paths.
The simulation then decides how deeply (the number of
steps forward) and how broadly to reevaluate, in terms
of the number of actions to reevaluate and the number
of samples per action. We assume that we do not have
enough time to reevaluate every action over the planning
horizon and thus only evaluate actions with promising
outcomes, given uncertainty about those outcomes. This
selection uses the offline state-action value function.
The function provides an estimate of the value (future
cumulative reward) for each action, assuming the cur-
rent state. The estimate actually includes a distribution

ARCAL algorithms

Logistics vehicle commands
Situational
awareness

Risk
info

Scout
vehicle

commands

Scout
vehicle

Sensor measurements

Mission
vehicle

Mission
goals

Operator
interface

Scout
belief

update

Logistics executive

Belief
updateRoad map

planner

Tasked
areaScout

dispatcher

Proposed
plansLogistics

planner

Adjustable
autonomy

Scout executive

Risk belief
map

Risk
monitoring

Scout
planner

Scout
MDP

Online
optimal
policy

O�line policy
learning

algorithm

Value
function

Online path
reoptimization

FIGURE 4. The scout planner architecture shows that the goal is to identify paths that maximize information. Scouts
model the problem and goal as an MDP and learn an offline policy in the form of a value function. Policy dictates what the
scout will do next. The policy may be improved online during the mission.

 VOLUME 22, 2015 ■ LINCOLN LABORATORY JOURNAL 17

LAWRENCE A.M. BUSH AND ANDREW WANG

described by a mean and variance. The distribution cap-
tures how well we know a given value: a high variance
distribution means that we do not know the value very
well, and a low variance distribution means that we know
it precisely. We select a sample from these distributions,
one for each action, and then choose the action with the
highest sample value. If one of the action distributions
consistently produces a high sample value, we know we
have little reason to evaluate other options. However, if
there is a state-action value distribution with an espe-
cially high variance, the action will sometimes produce
a sample with the highest value even though its mean is
lower. This phenomenon mirrors the probability that said
action is the best, given what we know. In other words, we
explore the actions in proportion to their optimality and
how certain we are about this parameter. In other words,
we determine which actions to reevaluate by represent-
ing the uncertainty about their true value. This uncer-
tainty distribution is used to select actions (Figure 6) for
reevaluation that appear to be good, but uncertain. We
may also evaluate less optimal plans whose true value is
subject to high variance.

To summarize, our method allows us to use offline
knowledge and processing to guide our scouts online—the
offline policy informs the additional online processing.
We can exploit both on-and offline control processing in
a complementary way.

The action-selection process describes a family of
algorithms because changing the search horizon and
branching factor fundamentally changes the algorithm.
For example, if we use a very small branching factor with

a long horizon, the algorithm closely resembles the rollout
algorithm. Rollout is a long-standing algorithmic method
originally developed to evaluating moves in the game of
backgammon, which was repurposed to evaluate MDP
policies in general. [4] On the other hand, using a short
horizon with a large branching factor closely resembles
model predictive control. The optimality of different
configurations depends on different applications and the
stage of the mission. For example, toward the end of a
mission, it could be helpful to use a wider search (larger
branching factor) to make sure that we appropriately con-
sider the end goal. Further extensions to our algorithm
may include using different branching factors at differ-
ent levels of the search tree. For example, it is easier for
a function to capture long-term objectives than short-
term details. This small extension would therefore allow
the algorithm to rely more on offline knowledge in the
middle of the mission (where long term evaluation is suf-
ficient) and more on simulation at the beginning and end
of the mission (where short tem information is critical).
Configuration parameters thus determine the appropri-
ate algorithm among the possible alternatives. Selecting
algorithms in this way enables us to design systems that
are broadly applicable to many applications.

Demonstration of Results
At this stage, we are currently designing and implement-
ing ARCAL’s logistics executive and adjustable autonomy
components. We have implemented the scout path-plan-
ning algorithm, which includes the path-planning prob-

FIGURE 6. Some steps need to be evaluated in a timely in-
flight manner—online. The online process describes a family
of algorithms that change the search horizon and branch-
ing factor and determine which plans needs to reevaluated
online.

FIGURE 5. The scouts use approximate dynamic program-
ming to learn a policy by simulating reconnaissance and
updating the value of each action.

1. Which collection path contributes the most to
 keeping the rescue vehicle safe?
2. Are we sure?
3. Reevaluate uncertain and viable alternatives.

18 LINCOLN LABORATORY JOURNAL ■ VOLUME 22, 2015

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

lem, the offline value iteration procedure, and the online
search for decision making. Overall, the scenarios task the
scout to reduce variance within a 10-by-10 gridded area,
but the areas of high variance differ across scenarios. To
show how our scout finds efficient sensing paths, we focus
on scenario A, which includes high variance across the
entire map, thus simulating a setting of incomplete prior
information for a region.

Scenario A runs with a mission length of 25 time
steps. Within the scenario’s context, we first illustrate
the evolution and convergence of the approximate values
function during value iteration. We use 100 samples to
represent the state subset. The scout can be within any of
100 unique grid cells, with four possible orientations in
each, and an infinite number of possible map beliefs. Our
value function representation is thus extremely sparse
relative to the actual state space. We display paths con-
structed during online execution to show how the scout
chooses to survey areas with higher uncertainty that are
within time constraints. The tree search algorithm is lim-
ited to 20 node traversals of computation, but searches
down to a depth of 7 nodes.

STATE SPACE SAMPLING

Figure 7 depicts the state-action value function evolving
over 10 sets of value iteration. The x-axis represents dif-

ferent sampled states in our lookup table, and the y-axis
shows the values associated with those states. When que-
rying the value of a state, we are not actually querying,
but rather representing the estimation architecture that
interpolates over the sample states in the table. However,
to aid conceptual convenience and transparency, we will
refer to the plots as the value function plots. The sample
states were constructed by initializing a simulated sce-
nario four times and letting the scout fly a predetermined
raster pattern that sweeps across the area for the 25-step
length of the mission. [5] To avoid gathering the exact
same data each time, we introduced stochasticity into the
path and increased it with each subsequent pass.

Our method samples a state "trajectory," which is a
path through the state space during a representative mis-
sion. Give a mission starting point, we employ a default,
or initial, policy in order to choose initial actions. This
"on-policy" approach tends to explore states that are likely
to occur. We inject some random decisions into the policy,
which allows the system to explore actions (and the asso-
ciated states) that are "outside of the envelope."

The result is shown as a sequence on value function
plots in Figure 7. At first, the values for each sample state
are initialized with low random noise (not visible at the
scale shown). In subsequent iterations, the values accrue
at each step because each state “looks ahead” to the next

Left
Straight
Right

Left
Straight
Right

Left
Straight
Right

Left
Straight
Right

Left
Straight
Right

Left
Straight
Right

ADP interation 0

ADP interation 10ADP interation 8ADP interation 6

ADP interation 4ADP interation 2

5

0

15

10

Es
tim

at
ed

 v
al

ue
 (
×1

0
4
)

5

0

15

10

Es
tim

at
ed

 v
al

ue
 (
×1

0
4
)

Sample state index
0 12010080604020

Sample state index
0 12010080604020

Sample state index
0 12010080604020

Sample state index
0 12010080604020

Sample state index
0 12010080604020

Sample state index
0 12010080604020

FIGURE 7. The approximate dynamic programmer (ADP) iterates through the state-action value functions. The
above graphs, taken at the zeroth, fifth, and tenth time points (of the ten iteration steps) in the policy learning process,
depict the value of each action (left, straight, right) in a series of policy driven trajectories through the state space. The
objective of the repetitive reinforcement learning process is to generate a function that attributes (maps) a value to
the three actions for every state in the state space. However, only a subset of the states can be sampled because of the
very large state-space size. Each graph shows four spikes for four trajectories. The values are higher at these mission
start points because there is more information to collect, and lower at the ends of the missions because there is less
information remaining. The value functions become more pronounced as the become more informed by the reinforced
learning process. The important result is for the function to be able to discern which action (left, straight, right) has
the greatest value.

 VOLUME 22, 2015 ■ LINCOLN LABORATORY JOURNAL 19

LAWRENCE A.M. BUSH AND ANDREW WANG

best state and adds that state’s value to its own reward
(i.e., variance reduction) for taking the action leading into
that state. The values gradually converge (i.e., the increase
at each step gets smaller) since accrual is increasingly dis-
counted over subsequent iterations. However, the most
interesting parts of these plots are the four peaks that
correspond to when the scout passes over high variance
areas and realizes large rewards. The reward subsequently
decreases for this area. The figures illustrate how the value
function effectively encodes and exploits the structure of
belief variance.

Figure 8 shows the algorithm’s path construction at
time steps 1, 10, 17, and 25. The upper plot in each frame
shows belief variance with a color scale, while the lower
plot shows the scout’s path for the given time step. The
diagram shows that the scout travels south into the area
of highest uncertainty and traverses it until the end of the
mission. Note how the scout systematically whittles away
the belief variance in the top plots. We rescaled the colors
so that areas with the highest remaining variance always
appear yellow, and thus show how they guide and attract
the scout. The scale changes significantly by the end of the
mission, demonstrating the extent of variance reduction.

This example shows that our scout planning algo-
rithm finds a path through an area such that it purpose-
fully surveys the most uncertain features, thus generating

the most valuable data for the logistics planner through
a combination of the offline value iteration and online
search procedures. The flexibility of our algorithm arises
from the Markov decision process framework, which eas-
ily adapts to any given scenario. An important detail of
our approach is that, since we cannot exactly represent
the value function, we acknowledge it by introducing sto-
chasticity into our decision making. Thus, our nondeter-
ministic solutions, while rarely optimal, are robust in the
presence of this uncertainty. When integrated within the
ARCAL system, the scouts can thus effectively contribute
to real-time logistical planning.

Autonomy Simulation Environment
To further assess autonomous behaviors in changing
environments, the ARCAL project is also developing a
UAS simulation environment (shown in Figure 9). This
environment includes a software infrastructure in which
collaborative autonomy algorithms and system behaviors
can be evaluated according to physical, environmental,
and network effects. Accelerated three-dimensional visu-
alization of the simulation provides demonstrative context
for the candidate algorithms. Metrics are being developed
to assess proper UAS decision making for autonomous
behavior in multi-vehicle and hierarchical configurations.

Belief variance

Trail map

10
8

4

6

2

1084 62

1084 62
10
8

4

6

2

8000

4000

6000

2000

1.0

0.8

0.4

0.6

0.2

0
1084 621084 62

1084 62 1084 62

1084 62

1084 62

Time: 1/25;
Loc: (2, 3); k=1

Time: 25/25;
Loc: (9, 4); k=3

Time: 17/25;
Loc: (7, 10); k=2

Time: 10/25;
Loc: (3, 8); k=2

FIGURE 8. Row one and two respectively show the belief uncertainty and scout path for our sce-
nario. The top row visualizes the belief uncertainty (variance) map at time steps 1, 10, 17, and 25;
the yellow reflects a higher uncertainty and red reflects a lower uncertainty. The bottom row visual-
izes the data collection path. Loc indicates the current location of the scout.

20 LINCOLN LABORATORY JOURNAL ■ VOLUME 22, 2015

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

FIGURE 9. The UAS simulation environment architecture leverages and integrates two powerful
simulation tools: MÄK Technology's VR-Forces simulation framework for computer generated forces
and OPNET’s Modeler simulation for high-fidelity communications. A well-defined interface is then
specified to drive autonomous vehicles and to simulate communication and other interactions within a
dynamic environment.

Environment Framework and Components
MÄK Technology's VR-Forces (VRF) is a simula-
tion framework for computer-generated forces (CGF),
allowing for scenario generation and behavioral mod-
eling of ground, air and sea entities (UASs, ground
vehicles). [6, 7] VRF entities have 3D volumetric rep-
resentations that interact with a specified terrain or
the overall environment. Each entity has a parameter
database that describes its physical and behavioral char-
acteristics. The simulation engine uses these parame-
ters as it interacts with the terrain and other entities.
Scenario generation consists of generating a terrain
and all simulation entities, which are assigned a plan
consisting of smaller tasks. Similar to robotic systems,
VRF uses a component architecture made up of sensors,
controllers,and actuators. These components combine
to form behavioral systems. The Laboratory framework
uses a customized application component interface
(API) to provide input to the autonomy algorithms.
VRF outputs its object state over a distributed architec-
ture for computer simulation systems called high-level
architecture (HLA). This is a CORBA-like middleware
that allows for federated applications using the same

simulated objects. VRF includes a detailed graphical
user interface (GUI) front end that subscribes to objects
over HLA and renders them, along with the terrain, in
an accelerated 3D environment.

It is important to model accurate network effects
because of their relevance in algorithm design. Leverag-
ing the fact that in VRF, communication effects can be
exported to an external server, we were able to integrate
OPNET modeler, a separate discreet event simulator,
that excels in network simulations. [9–11] Communica-
tions between entities are sent over HLA to an OPNET
simulation whose timing is synchronized with VRF. By
using VRF with customized component systems to pro-
vide behavioral modeling of UASs within a 3D terrain,
along with a front-end graphical visualization engine and
OPNET Modeler to provide communication effects, we
have a high-fidelity combination of software technologies
and APIs with which we can test and evaluate candidate
autonomy algorithms. [12]

In order to support the ARCAL search and rescue
scenario description, we needed the ability to discrimi-
nate terrain by using low-flying platforms. We assume
that our UASs are equipped with sensors that are able to

 VOLUME 22, 2015 ■ LINCOLN LABORATORY JOURNAL 21

LAWRENCE A.M. BUSH AND ANDREW WANG

discriminate between various terrain types (e.g., paved
road, shallow to deep water, grass, boulders). In addition
to identifying these terrain patches, we must determine
whether a given area has been disturbed from its previous
terrain type. We introduce a terrain “flag” that represents
a drastic change to a cell’s terrain. The sensors on the UAS
detect terrain conditions and upload them to their over-
head view of the area.

Sensor Modeling
We equip the UAS model in VRF with a custom coarse-
grained sensor that uses the terrain API to read what type
of terrain exists in each cell as the UAS flies over it. For
each terrain patch, two values are stored in a matrix: a
“prior,” which represents the risk of a given terrain (e.g.,
paved road is low risk, deep water is high risk), and a “vari-
ance,” which represents the sensor’s certainty of detection.
A fine-grained sensor is equipped on a second UAS. It
detects disrupted terrain and supplies updated variance
values to further reduce uncertainty.

The UAS with the lower-resolution sensor flies in a
simple raster pattern over an area of interest, forming
the initial matrix of priors and variances. This low-reso-
lution reconnaissance is a bootstrapping phase that can
be cached. The scenarist can then apply calamity effects to
the terrain by dropping a flag that represents a disruption
of that terrain patch. Alternatively, a random application
of calamity effects can be generated and overlaid onto the
terrain. At this point, the priors matrix is split up into
units for further refinement. For visualizing the sensed
area, each sensor has a visual cone angle that captures
the ground state as the UAS flies over the terrain. For the
fine-grained sensor, terrain cells are initialized with val-
ues that represent a function of their priors and variances.
The dynamic program uses the priors matrix to instruct
UASs with high-resolution sensors on where to go so as
to improve the priors matrix, narrow variances, and oth-
erwise detect the terrain’s real state.

As the UASs refine the priors matrix, communication
occurs by sending data to the OPNET simulation, sub-
jecting the data to the wireless effects of the configured
channel and terrain, as well as the communication effects
of the configured radio. We are currently using a single
candidate autonomy algorithm in the ARCAL simulation
framework, but most of the framework development itself
is agnostic with respect to the candidate algorithms.

As development of the Lincoln Laboratory ARCAL
simulation framework continues, we are putting together
an initial demonstration of some of the capabilities that
will ultimately be integrated into the full infrastructure.
Offline processing that uses the MIT scout path-planner
algorithm inputs terrain characteristics into the ARCAL
simulation environment to generate algorithm decisions.
The demonstration will showcase the ability of the coarse-
grained sensor to create a priors matrix for a given ter-
rain and the fine-grained sensor’s ability to further reduce
variances by flying paths determined offline by the Model-
based Embedded & Robotic Systems (MERS) algorithm’s
dynamic program (developed by MIT’s MERS Group).

The simulation assumes a single UAS rastering a
given swath of terrain. The priors matrix is written to a
file processed by a MATLAB script provided by MERS.
The texture value enumerations that were recorded cor-
respond to one of several supported “surface types” (e.g.,
asphalt, grass, deep lake, boulder). Next, the algorithm
is run on the priors matrix to determine flight paths for
the UASs. These flight paths are then imported back into
VRF. The high-resolution sensor will follow these paths
with the “terrain painting” customized GUI plug-in
enabled (Figure 10). The terrain will be mapped in order
to reduce variances. Ultimately, this processing will inte-
grate with the simulation itself, and the aforementioned
communications processing with OPNET will be used to
exchange information among entities.

Looking Forward
In the future, unmanned platforms will gain high-order
decision-making intelligence, form teams, and perform
collaborative tasks. The ARCAL project represents two
complementary areas of research that increase opera-
tor confidence in future autonomous system behaviors.
The first incorporates concepts of risk-based adjustable
autonomy with risk verification within system functions
and task-directed adaptive search techniques. An opera-
tor can adjust the autonomy level, employ autonomy
functions, or revert to fully manual control at any time.
The second involves new methods to effectively test and
evaluate collaborative autonomous team behaviors prior
to field deployment via a high-fidelity, interactive simula-
tion environment with 3D visualization.

Natural disaster relief scenarios were used to develop
and validate the concepts and technologies used in this

22 LINCOLN LABORATORY JOURNAL ■ VOLUME 22, 2015

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

and network conditions. An initial concept capabilities
demonstration under development uses task-directed
search algorithms for planning paths for UAS scout vehi-
cles to follow so as to update a terrain risk belief map.
This map is used in the ARCAL system architecture so
that adjustable autonomy algorithms can plan efficient
pathways.

This technology requires risk-based reasoning devel-
oped through formal models and algorithms. The archi-
tecture for such reasoning (in a context of path planning)
must include characterization of temporal risk. Tempo-
ral coordination is an essential aspect of any mission that
requires multiple activities to be executed in sequence or
simultaneously, with future tasks depending on the com-
pletion of earlier tasks. The problem of assessing temporal
risk is scheduling the activities such that they are proba-
bilistically robust against scheduling uncertainty. This
article formally described two algorithmic approaches
to this problem, demonstrating one approach through
experiments.

project. In these simulations, a team of UASs is dispatched
to determine the most efficient path for a logistics vehicle.
The autonomous algorithms, concepts, and technologies
can be used with the UAS simulation environment and
for other situations.

This article also introduced the theoretical basis for
adjustable autonomy used during control and supervision
of a team of UASs performing a collaborative task. Task-
directed search algorithms for UAS scout path planning
improved knowledge of the risks to the mission. An algo-
rithm test battery was developed and used to run tests on
the scout path-planning algorithms. The ARCAL system's
architecture incorporates autonomy algorithms that were
tested with the natural disaster recovery scenario. Initial
results show that the algorithm performs effectively.

The UAS simulation environment integrates com-
mercial state-of-the-art simulation and modeling prod-
ucts. It serves as a software infrastructure for evaluating
candidate collaborative autonomy algorithms and system
behaviors under very specific physical, environmental,

FIGURE 10. In this simulation, high-resolution sensors “paint” the terrain as the variances are reduced via data collection.
The circles mark to location of the UAS and the yellow lines point the direction of the UAS sensors.

 VOLUME 22, 2015 ■ LINCOLN LABORATORY JOURNAL 23

LAWRENCE A.M. BUSH AND ANDREW WANG

Today, both mission and sensing complexity are man-
aged through increased automation that allows operators
to abstract away from lower-level functions and focus on
high-level goals. The operator specifies goals at a cer-
tain level of abstraction and then relies on automation
to achieve them. The result is a significant collaboration
between humans and automation. Decisions traditionally
made by humans are now automated and significantly
improve the probability of a successful mission.

Sensing advances have increased mission perfor-
mance in terms of faster execution and greater complex-
ity. By providing relevant data with great immediacy, the
sensors can immensely accelerate mission planning and
execution. However, improved mission performance also
requires greater sensing complexity in sensor coordina-
tion and analysis. Sensing an environmental feature may,
for example, require a network of sensors operating in
a coordinated manner. Trade-offs between coverage and
resolution must be considered, and further trade-offs for
resource scarcity are magnified if heterogeneous sensors
are involved. To interpret the data from multiple sensors,
data would need to be integrated and analyzed. Finally,
rapid response requires real-time sensor coordination and
data analysis.

Networked sensing systems are enabling unprece-
dented levels of mission performance through significant
collaboration between human operators and advanced
automation. In the last decade, advances in low-cost
computation and networking have transformed single-
instrument sensors into networked systems of mobile
elements. For example, aerial surveillance is progress-
ing from being a mission conducted by a single-piloted
aircraft to a continuous operation maintained by teams
of smaller and less expensive UAS. The result has been
a dramatic increase in the observational capabilities and
response times of sensing systems. The multitude and
mobility of sensors can yield not only greater coverage,
but also greater depth and precision than achieved pre-
viously. Sensor networks can also offer redundancy and
immediacy. Rather than being a single point of failure,
sensing becomes a service whose performance improves
or degrades gracefully with the number of sensing assets.

Acknowledgments
To carry out this work, researchers and engineers from
MIT campus and MIT Lincoln Laboratory were collabo-
rated. Researchers (Lawrence Bush, Andrew Wang, and
Prof. Brian Williams) from the MERS Group at MIT
developed the theoretical basis for risk-based adjustable
autonomy and task-directed adaptive sensing in order to
autonomously coordinate multivehicle missions while
keeping the operator in the loop. Jeffrey McLamb, of Lin-
coln Laboratory’s Airborne Networks Group developed
the simulation environment to understand and evaluate
autonomous collaborative teaming behaviors, with an
emphasis on facilitating operator confidence for supervi-
sory control. The authors would also like to acknowledge
Michael Boulet, Bernadette Johnson, Jerry Jaeger, and
Matthew Kercher for their support of this research. ■

References
1. Bertsekas, D.P., Dynamic Programming and Optimal Con-

trol, vol. 1, ed. 3, Cambridge, Massachusetts, MIT Press,
2005.

2. Bertsekas, D.P., Dynamic Programming and Optimal Con-
trol, vol. 2, ed. 3, Cambridge, Massachusetts, MIT Press,
2007.

3. Tsitsiklis, J.N. and Van Roy, B., “Feature-based Methods for
Large Scale Dynamic Programming,” Machine Learning, vol.
22, no. 1, 1996, pp. 59–94.

4. Bertsekas, D.P. and Castanon, D.A., "Rollout Algorithms for
Stochastic Scheduling Problems," Journal of Heuristics, vol.
5, no. 1, 1999, pp. 89–108.

5. Tesauro, G., “Temporal Difference Learning and TD-Gam-
mon,” Communications of the ACM, 1995.

6. Sutton, R.S. and Barto, A.G., Reinforcement Learning: An
Introduction, 1998.

7. http://www.mak.com/products/simulate/vr-forces.html
8. Gao, H., LI, Z., and Zhao, X., "The User-defined and Func-

tion-strengthened for CGF of VR-Forces [J]." Computer
Simulation, vol. 6, 2007, p. 62.

9. http://en.wikipedia.org/wiki/OPNET#Corporate_history
10. Lucio, G.F., et al., "Opnet Modeler and NS-2: Comparing the

Accuracy of Network Simulators for Packet-level Analysis
Using a Network Testbed." WSEAS Transactions on Comput-
ers, vol. 2, no. 3, 2003, pp. 700–707.

11. Meenakshi, B., Rajput, R., and Gupta, G., "Mobile Ad Hoc
Networking (MANET): Routing Protocol Performance
Issues and Evaluation Considerations." The Internet Society
(1999).

12. Hammoodi, I.S., et al., "A Comprehensive Performance
Study of OPNET Modeler for ZigBee Wireless Sensor Net-
works," Next Generation Mobile Applications, Services and
Technologies, 2009. NGMAST'09. Third International Con-
ference on. IEEE, 2009.

24 LINCOLN LABORATORY JOURNAL ■ VOLUME 22, 2015

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

This sidebar discusses the overall
mission architecture. In the scenario
of a transport convoy responding to a
natural disaster, teams of ground vehi-
cles with trained responders must tra-
verse unknown terrain to reach people
in need. The mission goals are to
• Deliver provisions, administer

medical care, transport victims to
hospitals or shelters, repair infra-
structure, and set up field stations;

• Transport responders throughout
the affected region, performing
each task according to its priority.

• Task robotic aerial scouts to study
terrain.

The role of automation is to coor-
dinate these tasks by planning naviga-
tion for ground vehicles while human
responders focus on their tasks (Fig-
ure S1).

Figure S1 illustrates a disaster
ground-relief scenario. A team wait-
ing at a depot has been tasked with
picking up a patient at location A,
transporting him to the hospi-
tal, and unloading supplies at
the shelter at B along the way.
The navigation planner gener-
ates possible paths along roads
from the depot to A, A to B,
and B to the hospital. The risk
threshold, which pertains to
the patient transport task, may
not exceed 5%. The total risk
specifically includes success-
ful traversal across damaged
roads on a one-hour deadline.
The depot, A, and the hospital
are on one side of a river, while
B is on the other side. The only

feasible paths to and from B (given
the deadline) traverse bridges that
may have been critically damaged. A
longer path that avoids these bridges
leads from the depot to B and incurs
the least traversal risk. The final stage
from B to the hospital may require
aerial scouts to survey three candi-
date bridges.

While the transport team is pick-
ing up the patient at A, scouts relay
the information that only one of the
bridges is traversable and, further-
more, the roads from this bridge to B
pose a 10% risk to the patient. Oper-
ators can either accept the additional
risk or take the patient to the hospital
first and then visit the shelter at B, but
the longer path and nightfall will make
it harder to drive safely through dam-
aged roads.

The architecture can also incor-
porate unforeseen developments
(both positive and negative) that
affect the risk distribution. A person

on the response team, for example,
may be able to perform some sort of
triage on the patient en route, giving
the team a longer window to reach the
hospital. With the deadline extension,
the automation is able to find a plan
that addresses B and results in 6%
risk to the overall mission completion.

In assessing the mission risk,
the automation must consider (1) the
uncertainty of whether one can tra-
verse roads successfully and in a
timely manner relative to other mis-
sion segments, and (2) the possible
repercussions if roads are not pass-
able within the risk tolerances. For
instance, two of the bridges are untra-
versable, and the third has traffic or
requires more care in traversing and
therefore more time. The simulation
considers an off-road alternative in
the absence of traversable roads. This
iteration of the simulation would send
scouts to assess the off-road terrain
in a timely manner, so that the risk

map is current by the time the
patient at A is picked up. Mul-
tiple vehicles were not consid-
ered in this scenario, but in a
plan that involves a rendezvous
point, vehicles would ideally
converge simultaneously to
conserve resources, stream-
line other tasks, and minimize
risk.

The main article describes
how to plan and model the suc-
cess probability of a planned
path through a landscape
affected by a natural disaster
or crisis. The algorithm calcu-

Temporal Risk Assessment

A
B

Depot

FIGURE S1. A transport scenario may include multiple
tasks with associated risks. A patient at location A needs
to reach a hospital within one hour. People in location B
need access to shelter before nightfall.

 VOLUME 22, 2015 ■ LINCOLN LABORATORY JOURNAL 25

LAWRENCE A.M. BUSH AND ANDREW WANG

lates the risk belief distribution of a
path according to risks encountered.
Once risks for each potential path are
known and the optimal path has been
determined, responders still face the
challenge of minimizing and prioritiz-
ing response times for different crisis-
related tasks. Response time and the
coordination of tasks according to
temporal constraints are essen-
tial aspects of the planning archi-
tecture. A mission may call for
multiple activities to be executed
in sequence or simultaneously.
Temporal risk management requires
the coordination of tasks in a way that
is probabilistically robust against tem-
poral uncertainty.

Previous research has shown
that an iterative risk reallocation algo-
rithm capitalizes on the structure of
the desired temporal coordination
(e.g., identifying scheduling conflicts
and trying to solve them) to better
serve the operator in real-time tem-
poral risk management. Risk real-
location requires an algorithm that
makes local, iterative adjustments but
has global guarantees of identifying a
schedule that meets the risk criteria.
As with other forms of risk, the adap-
tive sampling algorithm can reduce
temporal risk by evaluating it within
the mission model and evaluating risk
estimates according to overall mission
risk thresholds. The planner deter-
mines a task ordering (i.e., schedule)
that satisfies the mission’s temporal
goals with a certain probability.

Calculating the exact risk
becomes increasingly difficult with
more complex mission structures.
Finding the optimal schedule is not
typically a tractable approach. The
most practical approach finds a fea-
sible schedule that obeys some mini-

mum failure rate. First, we formally
define the scheduling problem through
a specification of chance-constrained
temporal goals and temporal uncer-
tainty. Then, we restrict the solution
space to scheduling strategies that
are strongly controllable (i.e., a com-
plete schedule that is robust against
future uncertainty).

After defining the problem, we
reformulate it in terms of another tem-
poral problem with uncertainty. This
reformulation decouples chance and
temporal constraints, and maps the
strong controllability condition into
strong controllability for another, pre-
viously studied problem. The principle
behind our reformulation is to allocate
temporal risk to each activity’s dura-
tion. Each allocation reduces an activ-
ity’s probabilistic model of temporal
uncertainty into an interval bound.
Thus, satisfaction of the chance con-
straint depends wholly on the risk
allocation, while temporal constraints
are evaluated solely on the structure
of the interval bounds for duration.
We choose an interval-bounded refor-
mulation because it transforms the
structure of temporal uncertainty into
one that is addressable by efficient,
controllability-checking algorithms. A
strong controllability version of these

algorithms is described and exploited
by our algorithm. The problem can
then be reformulated into solvable
form.

Given a simple temporal net-
work, find a schedule that satisfies its
chance constraint.
• Drive to A. Pick up patient.
• Drive to B. Deliver shelter supplies.
• Drive to hospital. Unload patient.

We assume that the transit com-
ponents of each task are uncontrolla-
ble because of road conditions, while
the rest of the tasks are controllable
but have specific temporal require-
ments. Operator-imposed temporal
constraints begin upon arrival at an
accident scene. In the ongoing opera-
tional example, the constraint might
be that once the patient has been
moved, the transport team must reach
an emergency room within 60 min-
utes or the patient dies, immediately
nullifying the value of the operation.

Figure S2 illustrates the encod-
ing of this scenario as a probabilistic
simple temporal network (pSTN).
Uncontrollable events are squares
and represent arrival times. Uncon-
trollable durations are represented
by dotted arrows, while controllable
durations and temporal constraints
are represented by solid arrows. Each

FIGURE S2. The probabilistic simple temporal network encodes the disaster
relief scenario and the timing risks in seconds.

[0, 60]

[10, +∞) [1, +∞)[5, +∞)

D' H'B'A'

HBA

26 LINCOLN LABORATORY JOURNAL ■ VOLUME 22, 2015

AUTONOMOUS ROBOT CONTROL VIA AUTONOMY LEVELS

arrow is labeled with its respective
constraint (in minutes). Each control-
lable duration and simple temporal
constraint has a lower and upper tem-
poral bound as follows:
• Picking up and loading the patient

at A takes at least 5 minutes.
• Delivering shelter supplies takes at

least 10 minutes.
• Unloading the patient at the hospi-

tal takes at least 1 minute.
• Finally, the patient must reach the

hospital within 60 minutes of the
pickup time.

Each uncontrollable duration has
a continuous probability distribution
built from awareness of road condi-
tions. Constraint satisfaction prob-
lems can be represented as graphs
with variables as vertices and con-
straints as edges. Graphs elucidate
the dependency structure among
constraints based on the constraints’
shared variables.

Risk allocation distributes the
chance constraint’s specified failure

probability over the various sources of
uncertainty. In our case, these sources
are the uncontrollable durations.
Assuming an interval bound as a dura-
tion’s domain effectively assigns risk
to that duration (i.e., the probability
that the realized duration will fall out-
side the interval). The combination of
each duration’s assumed interval then
becomes the macro interval under
consideration.

This type of risk allocation
enforces structure, which enables
evaluation of both conditions. Specifi-
cally, the structure becomes a recti-
linear parallelopiped, with the axes
aligned within the uncontrollable out-
come space. The assumption that all
durations are independent of each
other means that conditions may be
evaluated as the product of prob-
abilities for each duration and strong
controllability can be easily veri-
fied. Placing interval bounds on each
uncontrollable duration reformulates
the pSTN as a simple temporal net-

work with uncertainty (STNU). In con-
trast to probability distributions with
infinite domains, these hard-bounded
assumptions of temporal uncertainty
simplify the controllability-checking
criteria. Thanks to previous research,
efficient algorithms exist to check
both the strong and dynamic forms of
STNU controllability. Risk allocation

effectively restricts the solution to
a series of small components (i.e.,
durations) that are easy to adjust
to satisfy the conditions of the sce-

nario.
Figure S3 shows the disaster

relief scenario in reformulated form.
Note that the temporal structure
remains virtually unchanged. Events,
nodes, and durations remain in their
original locations. However, each
uncontrollable duration now has a
lower-bound variable and an upper-
bound variable. The highlighted prob-
ability mass is the likelihood that the
duration will land in between these
bounds or between the inverse of the
risk assigned to that duration.

Controllability can then be
checked by using a specific grounded
disaster relief scenario. Checks can
identify events that become uncontrol-
lable under certain constraints, thus
removing those events from consid-
eration within scenarios. After cycling
through certain constraints, the over-
all STNU can itself be evaluated for
controllability.

FIGURE S3. The original pSTN scenario is now reformulated as a simple tem-
poral network with uncertainty

[0, 60]

[10, +∞) [1, +∞)[5, +∞)

[lA, uA] [lB, uB] [lH, uH]

D' H'B'A'

HBA

 VOLUME 22, 2015 ■ LINCOLN LABORATORY JOURNAL 27

LAWRENCE A.M. BUSH AND ANDREW WANG

ABOUT THE AUTHORS

Lawrence A.M. Bush is a member
of technical staff in the Intelligence and
Decision Technologies Group. He holds a
bachelor's degree in industrial engineering
and operations research from the University
at Buffalo, a master's degree in computer
science from Rensselaer Polytechnic
Institute and a doctorate in autonomous
systems from the Massachusetts Institute

of Technology. Larry’s doctoral thesis research, performed in the
Computer Science and Artificial Intelligence Laboratory (CSAIL)
in collaboration with the Monterey Bay Aquarium Research Institute
and the NASA Ames Research Center, focused on optimizing over
decision uncertainty for sensing missions. His areas of expertise
include pattern recognition, optimization, active learning, and active
sensing. He currently conducts research at MIT Lincoln Laboratory
in the areas of sensor data analytics for decision support; battle man-
agement, command, and control; human machine interaction; and
vehicle autonomy. While at the Laboratory, Bush developed and led
a human-in-the-loop experiment investigating the utility of decision
support algorithms, which integrate wide-area moving target indicat-
ing radar data and UAS-based optical imagery.

Andrew Wang is a doctoral candidate at
the Massachusetts Institute of Technology,
studying automated reasoning. His work
focuses on modeling and assessing the risk
of plans to improve the safety of robotic
task execution. He is interested in scaling
these methods so they may be employed
during fast online replanning. His work has

been demonstrated on vehicles that drive (Prius), dive (Slocum G2
Glider), and fly (AR.Drone). He earned bachelor's degrees in aero-
space and electrical engineering/computer science (EECS), and a
master's degree in EECS, all from MIT. He has received fellowship
offers from the Department of Defense and NASA. In addition to
research, He has pursued academic service projects with several
three-letter organizations, including Eta Kappa Nu, Tau Beta Pi, the
Experimental Study Group, and the Research Science Institute, all
at MIT.

